
Eng-DB-2 

A light-weight engineering database 

Copyright (c) 2010-2015 
Felix Bertram, fbertram@users.sf.net 

Jörn Henneberg, jhenneberg@users.sf.net 

GPL 

Eng-DB-2 is free software: you can redistribute it and/or modify it under the terms 
of the GNU General Public License as published by the Free Software 
Foundation, either version 3 of the License, or (at your option) any later version. 

Eng-DB-2 is distributed in the hope that it will be useful, but WITHOUT ANY 
WARRANTY; without even the implied warranty of MERCHANTABILITY or 
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License for more details. 

You should have received a copy of the GNU General Public License along with 
Eng-DB-2.  If not, see http://www.gnu.org/licenses/. 



Table of Content 

GPL ................................................................................................................................ 1 

Table of Content ............................................................................................................ 2 

Overview ........................................................................................................................ 3 

Prerequisites/ Installing ................................................................................................ 4 

First Launch................................................................................................................... 5 

Database structure ........................................................................................................ 5 
Directory structure ....................................................................................................... 5 
Components/ BOMs/ data ........................................................................................... 6 
Part Information ........................................................................................................... 6 
Data ............................................................................................................................ 7 
Quotations ................................................................................................................... 8 
Cross-references ......................................................................................................... 8 

Work flows ..................................................................................................................... 9 
Selecting products ....................................................................................................... 9 
Creating parts or assemblies ....................................................................................... 9 
Looking up parts ........................................................................................................ 10 
Opening parts ............................................................................................................ 10 
Assembling BOMs ..................................................................................................... 11 
Dealing with prices and quotations ............................................................................ 12 
Updating price information ......................................................................................... 12 
Where-Used search .................................................................................................. 13 
Exporting a product database .................................................................................... 13 
Dealing with forbidden characters in part numbers .................................................... 13 
Importing pre-existing data ........................................................................................ 13 

Appendix ...................................................................................................................... 15 
Example part numbering scheme .............................................................................. 15 

AC-xxx: Accessories/ Packout ............................................................................... 15 
AS-xxx: Assembly, set of items .............................................................................. 15 
Cx-xxx: Electrical Components .............................................................................. 15 
Mx-xxx: Mechanical components ........................................................................... 17 

 



Overview 

A key to success in developing consumer products is to properly maintain a 
library with engineering information throughout the development cycle starting 
with early concepts and going all the way through to shipping the product. This 
library should hold: 

• components 

• approved-vendor-lists 

• datasheets and other relevant documentation 

• quotations 

• design files 

• bills of material 

There are lots of commercial off-the-shelf PLM solutions available, including but 
not limited to Arena, Omnify or Windchill. However, these solutions are typically 
much more aimed at Operations than Engineering. 

Engineering’s requirements often differ from Operation’s requirements; mostly in 
how to deal with incomplete, preliminary and inaccurate information. In order to 
maintain productivity in Engineering, the following key requirements have been 
identified: 

• fast and light-weight process for creating parts 

• distinction between global library and product-specific parts 

• ability to deal with placeholder part-numbers 

• fast method for adjusting part information including AVLs and cost 

• fast method for importing quotations received from vendors 

• fast method for comparing quotations 

• full-text search for parts 

• simple ‘where-used’ search 

It is well understood, that ultimately the data will probably need to go into a 
database that is maintained by Operations. This leads to another requirement: 

• straightforward way of exporting the data to hand-off to Operations 



Prerequisites/ Installing 

To run Eng-DB-2 you will need to have the following tools installed: 

• Perl 

• Spreadsheet::WriteExcel 

• Text::CSV 

Eng-DB-2 was successfully tested under the following operating systems: 

• Mac OS X 10.6.5 … 10.9.5 
with Perl 5.10.0 and Spreadsheet::WriteExcel 2.37 

• Windows XP/ SP2 and Windows 7 
with ActivePerl 5.12.2.1202 and Spreadsheet::WriteExcel 2.37 

Probably, Eng-DB-2 runs under different systems as well, however this was not 
tested. 

Perl comes bundled with Mac OS X. On Windows, you can download the 
Community Edition of ActivePerl from the ActiveState website 
(http://www.activestate.com). 

Spreadsheet::WriteExcel and Text::CSV will always need to be installed 
separately. On Mac OS X, the following sequence of commands will do so: 

sudo cpan 
install Spreadsheet::WriteExcel 
install Text::CSV 

On Windows use the following command: 

perl -MCPAN -e "install 'Spreadsheet::WriteExcel'" 
perl -MCPAN -e "install 'Text:CSV'" 

There are multiple ways to install and use the database: 

• single install on local storage 
To do so, simply pick a convenient location on your local drive and unpack 
the database. 

• install on shared network drive 
Again, simply pick a convenient location on your local drive and unpack 
the database. 

• install using revision-control system 
Here, the first user picks a location on the local drive and unpacks the 
database. Next, this folder needs to be committed to the revision-control 
system. Additional users can then check-out the database to local storage. 



First Launch 

To launch the database, simply double-click the launcher scripts provided in the 
“src” directory. You might want to create a shortcut to these launchers in the 
Windows Start Menu or OSX’s Dock. 

Once you have launched the database, you will see a prompt similar to this: 

=== Eng-DB-2 - a light-weight engineering database === 
    version 1.0 (2010nov23) 
 
INFO: reading library at 'library' 
INFO: loaded 29 parts 
 
Eng-DB-2 > 

From this prompt, you can execute various commands. For a list of available 
commands, either type “help” or any illegal command. 

Database structure 

Directory structure 

The database has the following basic structure: 

/eng_db your database location might differ 
/eng_db/doc folder for documentation 
/eng_db/src folder for source files and launchers 
/end_db/library folder for library. You might for example have 

your RC4558 op-amp stored at this location: 
/eng_db/library/electrical/IC/CU-4558-0/ 

/eng_db/products folder for products. Your product “A” would 
have its home folder at /eng_db/products/A and 
your product “B” would go to 
/eng_db/products/B 

Regarding the structure of the database, there are only very few rules: 

• all library parts reside inside the “library” folder. You may create an 
arbitrary structure  inside this folder. 

• all product home folders reside directly in the “products” folder, no further 
nesting is allowed. 

• all product-specific parts reside inside the product. You may create an 
arbitrary directory structure inside the product’s home folder. 



Components/ BOMs/ data 

The database is created from a large structure of nested folders. Most of these 
folders have arbitrary names and will only be used to structure your data. 

Special text files direct Eng-DB-2 to recognize parts, BOMs or data. The following 
special text files exist: 

• info.txt to hold part information 

• data.txt to hold various additional data 

• quote.txt to hold quotations 

• xref.txt to hold cross-references 

Part Information 

Whenever an “info.txt” file is encountered, Eng-DB-2 will interpret this folder to 
hold part information. The folder name will be the part number and the contents 
of info.txt holds additional information about the part. The following tokens are 
recognized: 

descr the textural description of a part 
rev the revision number of the part 
sku an entry to the product SKUs; multiple sku 

lines are supported 
avl an entry for the approved vendor list; multiple 

avl lines are supported 
price the price for the part. This field is only 

supported for assemblies. 
pricesrc TODO 
rohs indicates rohs status for the part 
bom indicator that the BOM begins in the next row. 

This field distinguishes a component from an 
assembly. 

alias assigns a part number different from the folder 
name. See section “Dealing with forbidden 
characters in part numbers”. 

flag TODO 

The following example shows the info.txt file for a 555 timer IC. The file is stored 
at “/eng_db/library/electrical/ICs/CU-555-0”. The use of the “price” and “avl” fields 
should be self-explanatory. The “rohs” field should be used when sufficient RoHS 
information for the part exists; this will be indicated in the Excel BOMs later. 

descr=IC, Single Precision Timer, SOIC-8 
rev=1 
price=0.15 
pricesrc= 
rohs 



alias= 
avl="Texas Instruments", "NE555D" 
avl="Fairchild Semiconductor", "LM555CM" 

The price can be either specified in the ‘home’ currency or in a specific currency. 
If the price is specified with a currency, then the price will be converted to the 
home currency by use of a data entry (see section on Data). Examples: 

price=1.00 price specified in home currency (which would 
be US dollar for me) 

price=USD 1.00 price specified in US dollar, will be converted to 
home currency (which is also US dollar for me) 

price=$1.00 ‘$’ is equivalent to USD 
price=RMB 6.50 price specified in RMB, will be converted to 

home currency 

The next example shows the use of the SKU fields for a product. The file is 
stored at “/eng_db/products/Timer555”; resulting in the product name “Timer555” 
being assigned. The product features two separate SKUs that are referred to by 
two separate “sku” entries. Each SKU will result in a separate tab in the Excel 
BOM. 

descr=Timer 555 circuits 
rev=3 
sku=Monostable 
sku=Astable 

In case you had only a single SKU named “Monostable”, you could also use the 
“bom” field to start with the top-level BOM instead of specifying SKUs: 

descr=Timer 555 circuits 
rev=3 
bom 
Monostable    1 

In this format, a product looks just like any other assembly. After the “bom” field, 
every line is expected to hold a part number, the quantity and the reference 
designator. In case there are no reference designators, you may use this field for 
comments. 

Data 

Whenever a “data.txt” file is found, Eng-DB-2 will interpret this as a datum that 
might be used later on. The following tokens are recognized: 

descr the textural description for the datum 
value the numerical value for the datum 

Right now, Eng-DB-2 uses these data for currency conversions. In the future, this 
concept will probably be used for other purposes as well. 

This is how RMB are specified, the file is stored at “/eng_db/library/_data_/RMB”: 



descr=exchange rate RMB -> USD 
value=0.149253731343284 

Please note that while the description specifies this as the exchange rate from 
RMB to USD, this is not the full story. It is actually the exchange rate from RMB 
to the ‘home’ currency- which happens to be USD for me. For this reason, the 
following entry at “/eng_db/library/_data_/USD/” is not too surprising: 

descr=exchange rate USD -> USD 
value=1.0 

Quotations 

Whenever a “quote.txt” file is found, Eng-DB-2 will interpret this as a list of 
quotations that will be used when creating BOMs. The following tokens are 
recognized: 

descr the textural description of the quotation 

After the optional descr token come zero or more lines of quotations. Quotations 
can be given in multiple different formats: 

• Without an equal sign and without currency information: this format works 
best if you cut & paste from an Excel sheet. 

• With equal sign and with currency: this format can be used to specify 
quotes explicitly with the currency. 

• With equal sign but without currency 

The following example shows how multiple formats can be used: 

descr=DigiKey 
CC-103-0-06-0 0.06300 
CC-105-A-TR-0 = $ 0.03540 
CR-102-06-0 = USD 0.04300 
CU-555-0 = 0.49000 

Cross-references 

Whenever an “xref.txt” file is found, Eng-DB-2 will interpret this as a list of cross-
references that will be used when creating BOMs. Cross-references can be used 
for various purposes: 

• to hold part numbers from a distributor, e.g. DigiKey. This helps to resolve 
ambiguities with the part and to procure sample quantities for prototype 
builds 

• to hold part numbers from a CM. This increases the efficiency in 
communicating with the vendor. 

The following tokens are recognized: 

descr the textural description of the cross-reference 



After the optional descr token come zero or more lines of cross-references. Each 
cross-reference consists of a part number followed by the cross-reference part 
number. 

The following example shows how to use this feature: 

descr=DigiKey 
CC-103-0-06-0 445-2664-2-ND 
CC-105-A-TR-0 ECA-2AM010B-ND 
CR-102-06-0 P1.0KDBTR-ND 
CU-555-0 296-6501-1-ND 

Work flows 

Selecting products 

The database distinguishes between the global library and the product-specific 
items. Information residing in the library will be shared across all products and 
can be looked up at any time. Information residing in a product folder will only be 
available to that specific product and can only be looked up if that product is the 
currently selected product. This is useful in order to avoid cluttering the library 
with temporary information such as placeholder parts or modules. 

In order to select a product use the “prod” command, followed by the name of the 
product. The following example shows how to select the product “IPH”: 

Eng-DB-2 > prod iph 
INFO: reading library at 'library' 
INFO: reading library at 'products/IPH' 
Eng-DB-2 (IPH) > 

There are a few things worth noting: 

• the product name is not case-sensitive 

• the product name is displayed in parentheses after the prompt 

• you can unselect the current product by issuing the “prod” command 
without a product name 

When selecting a product, the library will be re-loaded to reflect the part changes. 
An additional “update” is not required. 

Creating parts or assemblies 

Creating a part is a very simple process: 

• pick a part number. You should have some part numbering scheme, see 
section on part numbering for a suggestion 

• decide if this is a global part or a product-specific part 



• for a global part, create a folder inside the library tree and make sure the 
folder name matches the desired part number 

• for a product-specific part, create a folder inside the specific product 
subtree and make sure the folder name matches the desired part number 

• create an info.txt file to hold the part information 

• add additional information, e.g. datasheets to the folder created 

• if desired, add cross-references to your product-specific xref.txt file 

• alternatively, you can create a CSV file, enter the required part information 
and use the ‘import’ command to batch-create parts. For more on this see 
section ‘Importing pre-existing data’ 

Looking up parts 

Before you look up parts, make sure the correct product is selected. Then, you 
can issue the “find” command followed by one or more words or partial words 
you want to search for. The search is not case sensitive and spans the following 
fields: 

• part number 

• part description 

• AVL 

• cross-reference 

A few examples: 

Eng-DB-2 (TIMER555) > find res 
--- 1 ---------- 
Part Number: CR-102-06-0 
Description: Resistor, 1k Ohm, 0.1W, Metal Film, SMD 0603 
Revision:    1 
Price:       0.0020 
Quote:       0.0430 
AVL:         Panasonic - ECG [ERA-3AEB102V] 
Crossref:    P1.0KDBTR-ND 

 

Eng-DB-2 (TIMER555) > find panasonic cap 
--- 1 ---------- 
Part Number: CC-105-A-TR-0 
Description: Capacitor, 1uF, 100V, 20%, Electrolytic, through-hole, radial 
Revision:    1 
Price:       0.0100 
Quote:       0.0354 
AVL:         Panasonic - ECG [ECA-2AM010B] 



Crossref:    ECA-2AM010B-ND 

Opening parts 

Often, when you found a part you will want to review the additional information 
provided for it. As this information is stored in folders in the file system, a method 
to quickly locate and open that folder is useful. The “open” command does 
exactly that. It works just like the “find” command, however instead of printing the 
result of the search, it opens the associated folders. 

The following example will open the folder for part CR-102-06-0: 

Eng-DB-2 (TIMER555) > open res 1k 
INFO: 'open "/Users/felix/Desktop/eng_db/library/electrical/resistors/CR-
102-06-0"' 



Assembling BOMs 

Once all parts and assemblies are created, finished-goods BOMs can be 
assembled using the “bldbom” command. The command does not take any 
parameters. While assembling the BOM, the console will show the hierarchy of 
assemblies. Example: 

Eng-DB-2 (TIMER555) > bldbom 
MONOSTABLE 
ASTABLE 

The command creates the following output: 

• Excel BOMs (both costed and sanitized) with separate tabs for each SKU 
and a part-master tab for detailed part information. 

• Excel part lists (both costed and sanitized) with separate tabs for each 
SKU and a part-master tab for detailed part information. 

• Text file with the simplified BOM information to allow easy comparison of 
BOMs. 

The following image shows an example for a costed BOM. Every assembly will 
be colored. The lime-green fields indicate issues, in this case there is neither a 
price nor a quote given for the PCB fab. The delta column shows what the 
difference between your target pricing and the current quotation is. 

 

This is an example of the part-master tab. This tab lists all the parts, their AVLs 
and cross-references: 

 

And here is an example of the parts list. In contrast to the BOM which is 
structured by assemblies, the parts list simply lists all parts and their aggregated 
quantities for the product. This is exactly what you need to order parts: 

 



Dealing with prices and quotations 

Eng-DB-2 can help you in managing costs by annotating BOMs with costs, see 
the paragraph about creating BOMs for sample output. Here is a recommended 
way to work with quotations: 

1. prepare a BOM with Eng-DB-2 and create an Excel BOM (bldbom 
command) 

2. send the sanitized Excel BOM to your contract manufacturer and have 
them quote 

3. when the quote comes back, open the sheet in Excel 

4. Delete everything but the following columns: part number and unit price 

5. Copy the sheet (CTRL-C) 

6. Open your quote.txt file; if you don’t have one create one next to your 
product’s info.txt 

7. Paste your data from above (CTRL-V) into quote.txt 

8. Re-run the Excel BOM (bldbom command). Your Excel BOM is now 
annotated with the quotation! 

Typically, you will use the quotation to estimate the total material cost for your 
product while you are still in development.  Therefore, your most-recent BOM will 
often be out-of-sync with what the CM has quoted on. As the quotations are held 
in a separate file and keyed by the part number, this is not an issue. 

Eng-DB-2 distinguishes between prices and quotations: A price is your target that 
you reasonably expect to pay for a component. A quotation is what the CM has 
quoted for that component. Both will often not match. However, it is good practice 
to have pricing attached to all your components in the database and then drive 
the quotations towards that target. Often in this process, you will be missing 
quotes or prices for certain components. Eng-DB-2 deals with this the following 
way: 

• if a component does not have a price, that field will be marked lime green 
and Eng-DB-2 will carry over the number from the quotation 

• if a component does not have a quotation, that field will be marked lime 
green and Eng-DB-2 will carry over the number from your pricing 
information 

Updating price information 

The updprice command allows to update library pricing information from local 
quotations (quote.txt) or price updates (price.txt). 

The updprice command takes the following options: 

q transfer quotations (quote.txt) back to library 



p transfer pricing (price.txt) back to library 
h transfer only those prices which are higher 

than the library pricing 
l transfer only those prices which are lower than 

the library pricing 
n transfer pricing for those parts that have no 

library pricing yet 
a transfer all pricing information regardless of 

being higher or lower than library pricing 
c ask for confirmation of each price transferred 

Here is an example: 

Eng-DB-2 (CCS) > updprice qac 
Part Number: CY-24M576-0 
Price:       0.2500 
Update:      0.0650 
*** update this price? y/n/c: 

Where-Used search 

With eng-db-2, you can create a report where a certain part is used. You can 
search for part numbers or key words. 

The following example shows how to search for components containing the word 
texas: 

Eng-DB-2 (CCS) > where texas 
loading product 'CCS'... 
loading product 'IPH'... 
--- 1 ---------- 
Part Number: CU-4558-0 
Description: IC, Operational Amplifier, Dual, GP, 3MHz 
Used in:     qty = 2:  CCS [SKID-2.0-US-BRICK] 
             qty = 2:  CCS [SKID-2.0-US-BRICK] 

The report lists the products and SKUs that use the component along with the 
quantity. 

Exporting a product database 

Partially implemented – description t.b.d. 

Dealing with forbidden characters in part numbers 

If the engineering department did exist prior to using eng-db-2, chances are, 
there is an existing scheme for naming parts. Eng-db-2 stores part information in 
a folder named after the part. Name issues start to occur if the part name 
consists of invalid characters for folder names, such as ‘\’, ‘/’, ‘*’ etc. 



Eng-db-2 deals with this kind of part names by creating an internal alias. Invalid 
characters are replaced with a dash (‘-‘) in folder names, and the ‘alias’ keyword 
is added to the info.txt file. 

TODO: check if subst will do the alias functionality. 

Importing pre-existing data 

Often there will be a pre-existing parts database of some form that needs to be 
imported into eng-db-2. The data could stem from an operations database, or 
from another engineering tool that was previously used to manage parts. Another 
use-case scenario would be creating a number of parts at once for e.g. a new 
product. 

Eng-db-2 can import part data from a CSV file. To do so, eng-db-2 must first be 
configured to import the correct CSV columns. The “import.txt” file is used to 
setup the CSV information. The file contains the following fields: 

infoline=<line-number> 
descr=<column name or number> 
pn=<column name or number> 
price=<column name or number> 
avl=<vendor name column>, <vendor pn column> 
default=<default sub-folder> 
<sub-folder>=<pn-id>, <pn-id>, …, <pn-id> 

The infoline identifier is optional and tells eng-db-2 the row number which holds 
the header titles. Both rows and columns are zero-based. Rows before this 
number are ignored. If infoline cannot be found in the file, it is assumed all other 
identifiers are numerical column numbers and that part records start at row 0. 

All other column identifiers can either be numeric (zero-based as well) to indicate 
the column number, or contain the column name in the infoline. In the latter case, 
eng-db-2 will automatically extract the correct column number by searching for 
the column name. This is useful if the order of columns cannot be guaranteed 
over multiple imports. Both the pn and descr columns are required, all others are 
optional and will be ignored if not found in the CSV file. 

The AVL identifier expects both a column for the vendor name followed by a 
column for the vendor part number, separated by a comma. Multiple AVL lines 
are supported. 

If the imported data is supposed to be sorted into individual sub-folders like 
capacitors and resistors for the corresponding parts, eng-db-2 needs to know 
about the part number structure. The subfolder identifier is used for this purpose. 

The subfolder identifier must start with a forward-slash (‘/’), and may contain 
multiple of them to support multiple folder levels. 



The pn-id identifier is the part of the PN used for sorting the part into the correct 
folder structure. Several identifiers are supported for the same folder, separated 
by comma. Currently eng-db-2 only supports pn-ids at the beginning of the P/N. 

The default identifier is required and used to have eng-db-2 create parts of 
unknown PN structure. If you do not want eng-db-2 to sort parts into different 
folders, this would be the only entry. 

The following shows an example for the import.txt file format: 

infoline=0 
pn=item_number 
descr=item_name 
price=current_prod_cost 
avl=vendor_1,vendor_item_number_1 
avl=vendor_2,vendor_item_number_2 
avl=vendor_3,vendor_item_number_3 
# the 'default' definition is required 
default=/undefined 
/electrical/capacitors=CC 
/electrical/diodes=CD 
/electrical/resistors=CR 
/electrical/oscillators=161,162,163 



Appendix 

Example part numbering scheme 

You are completely free to choose your own part numbering scheme with Eng-
DB-2. There are a few things to keep in mind though: 

• apply some logic: it is good practice to design the part numbering scheme 
such that some basic information about the nature of a part can be 
retrieved from the part number. 

• keep it simple: it is good practice to not try and encode every possible 
aspect of a part in the part number. Instead, part numbers should be 
relatively short and simple. 

• allow for clashes: when using a simple scheme, sooner or later the 
situation will arise where you have multiple parts that would be assigned 
the same part number. It is good practice to allow for part number clashes 
of this kind by adding an index to the end of the part number. 

• for localized parts, make sure you include some localization info, 
preferably following the ISO 3166 country codes:  
http://www.immigration-usa.com/country_digraphs.html 

AC-xxx: Accessories/ Packout 

AS-xxx: Assembly, set of items 

This is used for a set of items, e.g. the packout BOM of a product 

Cx-xxx: Electrical Components 

CA-xxx: module/ electrical assembly/ cable assembly 

Example: CA-AUBTM-23 

CB-xxx: bare PCB boards 

Example: CB-CCS-DSP 

CC-xxx: Capacitors 

CC-mme-d-ss-i 

• mme: the mantissa of the capacitance with two digits plus the exponent 
with a single digit. Examples: 100=10pF; 103=10nF; 106=10uF. 

• d: electrolyte. Use 0 for C0G/NP0, 5 for X5R, 7for X7R, Y for Y5V, A for 
aluminum. 

• ss: the physical size of the component. Examples: 06=0603; 08=0805; 
TR=through-hole radial. 

• i: an index to differentiate parts in case there are any clashes. 



CD-xxx: Diodes 

CD-xxx-i 

• xxx: manufacturer part number. Care should be taken to use generic part 
numbers for parts that are available from multiple vendors. Examples: CU-
4558-0 for a 4558 op-amp; CU-ADSP-BF592 for a Blackfin DSP from 
Analog Devices. 

• I: index to differentiate parts in case of clashes. 

CE-xxx: EMI material 

E.g. ferrite cores attached to cables. 

CF-xxx: Ferrites 

CF-mme-ss-i 

CJ-xxx: Connectors 

CJ-xxx-ss-i 

• xxx: this field holds the number/layout of pins. 

• ss: the spacing of the pins in metric units. 

• i: index to differentiate parts in case of clashes. 

Examples: 

• CJ-7x2-25-0: this is a dual-row header connector with 14 pins, 1/10” or 
2.54 mm spacing 

• CJ-TRS-3.5-0: this is a 3.5mm stereo audio jack 

CL-xxx: Inductors 

CL-mme-ss-i 

• mme: the mantissa of the inductance with two digits plus the exponent 
with a single digit. Examples: 100=10uH, 470=47uH, 391=390uH 

• ss: the physical size of the component. Examples: 10=1007 

• i: an index to differentiate parts in case there are clashes 

• mme: the mantissa of the resistance with two digits plus the exponent with 
a single digit. Examples: 310=31R, 471=470R 

• ss: the physical size of the component, Examples: 08=0805 

CQ-xxx: Transistors 

See diodes for more details 



CR-xxx: Resistors 

CR-mme-ss-i for 5% or 10% tolerance 

CR-mmme-ss-i for 1% tolerance 

The fields are used as follows 

• mme or mmme: the mantissa of the resistance with two/three digits plus 
the exponent with a single digit. Examples: 1001 = 1 kilo Ohm/1%; 330 = 
33 Ohm/5%; 3R3 = 3.3 Ohm/5%. 

• ss: the physical size of the component. Examples: 06= 0603; 08=0805. 

• i: an index to differentiate parts in case there are any clashes. 

CSW-xxx: Switches, encoders 

CT-xxx: Transducers 

CT-tvviiimmmr 

• t: (T) Tweeter, (M) Midrange, (W) Woofer, (R) Passive Radiator, (S) 
Special, (H) Headphone, (C) MIC 

• vv: 2 letter abbreviation for vendor 

• iii: 3-digit nominal impedance value 

• mmm: 3-character model number (based on vendor’s model number) 

• r: 1-character modifier to indicate model revision number (use 
hexadecimal) 

Example: CT-TDM0062P61 for the most recent version of the tweeter used in 
Airdock. 

CU-xxx: Integrated circuits 

See diodes for more details 

CVR-xxx: Potentiometers 

CW-xxx: Cable/ Wire 

CY-xxx: Crystals 

Example: CY-24M576-0 



Mx-xxx: Mechanical components 

ME-xxx: electro-/mechanical module 

MH-xxx: Hardware 

MM-xxx: Metal parts 

MO-xxx: Other mechanical items 

MP-xxx: Plastic parts 


